Антибиотики широкого спектра действия часто назначаются больным. Их противомикробное действие направлено на бактерии, вирусы, грибки и простейшие. Сегодня в распоряжении врачей имеется огромное количество антибиотиков. У них разное происхождение, химический состав, механизм антимикробного действия, антимикробный спектр и частота развития лекарственной устойчивости. Классификация антибиотиков претерпела множество изменений со времени их применения в клинической практике.
Разнообразны группы антибиотиков. Однако все они имеют и сходные признаки:
Не проявляют заметное токсическое действие на организм.
Обладают выраженным избирательным действием на микроорганизмы.
Формируют лекарственную устойчивость.
Термин «антибиотик» внедрен в лексикон врачебной практики с момента получения и внедрения в лечебную практику пенициллина в 1942 году.
Первый антибиотик был открыт еще в 1929 году ученым Александром Флемингом. Биохимик англичанин Эрнст Чейн впервые получил антибиотик в чистом виде. Далее было начато их производство. А с 1940 года антибиотики уже активно использовались для лечения.
Сегодня производится более 30-и групп противомикробных препаратов. Все они имеют свой микробный спектр, имеют разную степень эффективности и безопасности.
Рис. 1. В 1945 году Флемингу, Флори и Чейну была присуждена Нобелевская премия по физиологии и медицине «За открытие пенициллина и его целебного воздействия при различных инфекционных болезнях».
Рис. 2. На фото «Спасительная плесень» пенициллина.
«Когда я проснулся на рассвете 28 сентября 1928 года, я, конечно, не планировал революцию в медицине своим открытием первого в мире антибиотика или бактерии-убийцы», — эту запись в дневнике сделал Александр Флеминг, человек, который изобрёл пенициллин.
Кто вырабатывает антибиотики?
Антибиотики способны вырабатывать некоторые штаммы бактерий, грибки и актиномицеты.
Бактерии
Штаммы Bacillus subtilis образуют бацитрацин и субтилин.
Pseudomonas aeruginosa обладает способностью образовывать некоторые виды пиосоединений (пиоциназа, пиоцианин и др).
Bacillus brevis образует грамицидин и тиротрицин.
Bacillus subtilis образует некоторые полипептидные антибиотики.
Bacillus polimixa образует полимиксин (аэроспорин).
Актиномицеты
Актиномицеты представляют собой грибковоподобные бактерии. Из актиномицетов получено более 200 антимикробных соединений антибактериальной, антивирусной и противогрибковой направленности. Самые известные из них: стрептомицин, тетрациклинин, эритромицин, неомицин и др.
Streptomyces rimosus выделяют окситетрациклин и римоцидин.
Streptomyces aureofaciens выделяют хлортетрациклин и тетрациклин.
Streptomyces griseus образует стрептомицин, маннозидострептомицин, циклогексимид и стрептоцин.
Грибки
Самые главные производители антибиотиков. Грибки вырабатывают цефалоспорин,
гризеофульвин, микофеноловую и пенициллиновую кислоты и др.
Penicillium notatum и Penicillium chrysogenum образуют пенициллин.
Aspergillus flavus образует пенициллин и аспергилловую кислоту.
Aspergillus fumigatus образует фумигатин, спинулозин, фумигацин (гельволевую кислоту) и глиотоксин.
Рис. 3. На фото колония сенной палочки — почвенной бактерии. Bacillus subtilis образует некоторые полипептидные антибиотики.
Рис. 4. На фото штаммы Penicillium notatum и Penicillium chrysogenum образуют пенициллин.
Окрашивание бактериальных клеток в разный цвет в зависимости от толщины клетки изобрел в 1884 году датский бактериолог Ганс Кристиан Йоахим Грам. Его метод окраски сыграл главную роль в разработке классификации бактерий.
Рис. 6. На фото строение бактериальной стенки грамположительных (справа) и грамотрицательных (слева) бактерий.
Грамотрицательные бактерии
У бактерий, которые при окрашивании по Граму приобретают красную или розовую окраску (грамотрицательные), клеточная стенка толстая, многослойная. Внешняя мембрана грамотрицательных бактерий служит защитой от некоторых антибиотиков — лизоцима и пенициллина. К тому же липидная часть внешнего листа мембраны этих бактерий выполняет роль эндотоксинов, которые, попадая в кровяное русло при заражении вызывают мощную интоксикацию и токсический шок.
Грамположительные бактерии
У бактериальных клеток, которые при окрашивании по Граму приобретают фиолетовую окраску (грамположительные), клеточная стенка тонкая. Внешний лист мембраны у них лишен липидного слоя — защиты от неблагоприятных условий. Такие бактерии легко повреждаются антибиотиками с бактериостатическим действием и антисептиками.
Рис. 7. На фото мазок, окрашенный по Граму. Видны грамположительные кокки синего цвета и грамотрицательные бациллы розового цвета.
Группы антибиотиков синтетического происхождения (химиопрепараты)
Вещества, подавляющие рост и размножение бактерий синтетического происхождения правильно называть не антибиотиками, а химиопрепаратами. Сегодня их насчитывается 14 групп. Создавались химические соединения антимикробной направленности еще с начала XX века. Однако больших успехов на этом поприще ученые достигли с момента успехов синтетической химии. Первый химический препарат был синтезирован Паулем Эрлихом в 1907 году. Это был препарат для лечения сифилиса Сальварсан.
Сегодня 90% всех лекарственных препаратов, которые продаются в аптеках синтетического происхождения.
Рис. 8. На фото Сальварсан или «Препарат 606». Препарат создан Паулем Эрлихом на 606 попытке. 605 экспериментов по созданию химического препарата для лечения сифилиса были неуспешными.
Сульфаниламиды
Эта группа химиопрепаратов представлена Норсульфазолом, Сульфазином, Сульфадимезином, Сульфапиридазином, Сульфамоно- и Сульфадиметоксинами. Уросульфан широко применяется в урологической практике. Бисептол является комбинированным препаратом, который содержит сульфаметоксазол и триметоприм.
Препараты группы сульфаниламидов блокируют в клетке образование факторов роста — специальных химических веществ, которые принимают участие в обменных процессах. Применение сульфаниламидов ограничено из-за их параллельного воздействия на клетки человека.
Аналоги изоникотиновой кислоты и азотистых оснований
Аналоги изоникотиновой кислоты и азотистых оснований широко применяются при лечении туберкулеза. Препараты этой группы: Фтивазид, Изониазд, Метазид, Этионамид, Протионамид и ПАСК.
Производные нитрофурана
Производные нитрофурана обладают противомикробной активностью в отношении грамотрицательных и грамотрицательных бактерий, хламидий и трихомонад. Препараты этой группы представлены Фурациллином, Фуразолидоном и др., а также производными нитро-имидазола — Метронидазолом и Тинидазолом. Они блокируют процессы синтеза дочерних молекул ДНК.
Группа хинолонов/фторхинолов
Препараты этой группы проявляют активность в отношении грамотрицательных бактерий. Они представлены налидиксиновой кислотой, производными хинолонтрикарбоновой кислоты и производными хиноксалина. По мере введения этих препаратов в клиническую практику, их разделили на 4 поколения. Высокая антимикробная активность фторхинолов послужила поводом к разработке лекарственных форм для местного применения — ушных и глазных капель.
Производные имидазола
Производные имидазола (клотримазол, кетоконазол, миконазол и др.) обладают мощной активностью в отношении паразитических простейших и грибков. Широко применяются при трихомониазе, амебиазе и грибковых инфекциях. Метронидазол проявляет активность в отношении возбудителя язвенной болезни желудка и 12-и перстной кишки Helicobacter pylori.
Производные оксихинолина
Препараты этой группы активны в отношении грамположительных и грамотрицательных бактерий, в том числе в отношении штаммов, проявляющих устойчивость к антибиотикам. Некоторые из них активны в отношении простейших (Хиниофор), другие — в отношении дрожжеподобных грибков рода Candida (Нитроксолин).
Группы антибиотиков по механизму ингибирующего действия на разные структуры клетки
Антибиотики губительно действуют на микробную клетку. Их «мишенью» являются клеточная стенка, цитоплазматическая мембрана, рибосомы и нуклеотид.
Антибиотики, влияющие на клеточную стенку
Данная группа препаратов представлена пенициллинами, цефалоспоринами и циклосерином.
Пенициллины убивают микробную клетку путем подавления синтеза пептидогликана (муреина) — основного компонента их клеточных мембран. Этот фермент вырабатывают только растущие клетки.
Антибиотики, подавляющие синтез рибосомных белков
Самая многочисленная группа антибиотиков, которые продуцируются актиномицетами. Она представлена аминогликозидами, группой тетрациклина, левомицетином, макролидами и др.
Стрептомицин (группа аминогликозидов) оказывает антибактериальное действие способом блокировки субъединицы 30S рибосомы и нарушением считывания генетического кодонов, в результате чего образуются ненужные микробу полипептиды.
Тетрациклины нарушают связывание аминоацил-тРНК с комплеском рибосомы-матрица, в результате чего подавляется синтез белка рибосомами.
У мелких бактерий, внутриклеточных паразитов, тетрациклины подавляют окисление глутаминовой кислоты — исходного продукта в реакциях энергетического метаболизма. Левомицетин, линкомицин и макролиды подавляют пептидилтрансферазную реакцию с 50 S субъединицей рибосомы, что ведет к прекращению синтеза белка бактериальной клеткой.
Антибиотики, которые нарушают функцию цитоплазматической мембраны
Цитоплазматическая мембрана располагается под клеточной стенкой и представляет собой липопротеин (до 30% липидов и до 70% протеинов). Антибактериальные препараты, которые нарушают функцию цитоплазматической мембраны, представлены полиеновыми антибиотиками (Нистатин, Леворин и Амфотерицин В) и Полимиксином. Полиеновые антибиотики адсорбируются на цитоплазматической мембране грибков и связываются с ее веществом эргостеролом. В результате этого процесса клеточная мембрана теряет макромолекулы, что приводит к обезвоживанию клетки и ее гибели.
Антибиотики, которые ингибируют РНК-полимеразу
Данная группа представлена рифампицинами, которые продуцируются актиномицетами. Рифампицин подавляет активность ДНК-зависимой РНК-полимеразы, что приводит к блокировке синтеза белка при переносе информации из ДНК на РНК.
Рис. 10. Повреждение мембраны бактериальной клетки антибиотиками приводит ее к гибели (компьютерное моделирование).
Рис. 11. На фото момент синтеза белка из аминокислот рибосомой (слева) и трехмерная модель рибосомы бактерии Haloarcula marismortui (справа). Именно рибосомы часто становятся «мишенью» для многих антибактериальных препаратов.
Рис. 12. На фото момент удвоения ДНК вверху и молекула РНК внизу. Рифампицин подавляет активность ДНК-зависимой РНК-полимеразы, что приводит к блокировке синтеза белка при переносе информации из ДНК на РНК.
Классификация антибиотиков по воздействию на микробную клетку
Антибиотики обладают разным действием на бактерии. Одни из них останавливают рост бактерий (бактериостатики), другие — убивают (бактериоцидное действие).
Антибиотики с бактериоцидным действием
Препараты этой группы убивают бактериальную клетку. К ним относятся бензилпенициллин, его полусинтетические производные, цефалоспорины, фторхинолоны, аминогликозиды, рифампицины.
Препараты этой группы останавливают рост микробов. Бактерии, не достигшие определенных размеров, не способны к размножению и быстро погибают, поэтому бактериостатический эффект равен по силе бактериоцидному. К антибиотикам этой группы относятся тетрациклины, макролиды и аминогликозиды.
Рис. 13. На антибиотики, как и на другие лекарственные препараты может развиться аллергия. На фото разные проявления аллергии (кожная форма).
По воздействию на микробы антибиотики подразделяются на две группы: широкого спектра действия (основная масса антимикробных препаратов) и узкого.
Антибиотики узкого спектра действия
а) Бензилпенициллин обладает активностью в отношении гноеродных кокков, грамположительных бактерий и спирохет.
б) Противогрибковые препараты природного происхождения Нистатин, Леворин и Амфотерицин В. Обладают активностью в отношении грибков и простейших.
Антибиотики широкого спектра действия
Антибиотики широкого спектра действия проявляют активность в отношении целого ряда грамотрицательных и грамположительных бактерий. Некоторые из них губительно действуют на внутриклеточные паразиты — риккетсии, хламидии и микоплазмы. Антибиотики широкого спектра действия представлены цефалоспоринами третьего поколения, тетрациклинами, левомицетином, аминогликозидами, макролидами и рифампицином.
Рис. 14. Для детей широко используются таблетированные формы, суспензии и сиропы. Для подростков – таблетки и капсулы.
Антибиотики широкого спектра действия: краткая характеристика
Пенициллины
Пенициллины естественного происхождения считаются антибиотиками узкого спектра действия. Наиболее активно в медицинской практике применяется бензилпенициллин и феноксипенициллин. Препараты активны в отношении грамположительных бактерий и кокков.
Изоксалпенициллины
80–90% штаммов Staphylococcus aureus (золотистый стафилококк) устойчивы к пенициллину, так как способны вырабатывать ферменты (пенициллиназы), разрушающие одну из составных частей молекулы всех пенициллинов — бета-лактамного кольца. С 1957 года начата разработка полусинтетических антибактериальных препаратов. Учеными были разработаны антибиотики, устойчивые к действию фермента стафилококков (изоксалпенициллины). Основными антистафилококковыми препаратами из них являются оксациллин и нафтициллин, которые широко применяются при лечении стафилококковой инфекции.
Пенициллины с расширенным спектром активности
К пенициллинам расширенного спектра действия относятся:
аминопенициллины (не убивают синегнойную палочку),
карбоксипенициллины (активны в отношении синегнойной палочки),
уреидопенициллины (активны в отношении синегнойной палочки).
Аминопенициллины (Ампициллин и Амоксициллин)
Препараты этой группы проявляют активность в отношении Escherichia coli, Proteus mirabilis, Salmonella spp., Shigella spp., Haemophilus influenzae, Listeria monocytogenes и
Streptococcus pneumoniae.
Препараты широко применяются при лечении инфекциях верхних дыхательных путей, в практике ЛОР-врачей, заболеваниях мочевыводящей системы и почек, желудочно-кишечного тракта, в том числе при лечении язвенной болезни желудка, причиной которого является Helicobacter pylori и менингите.
Как и аминопенициллины, препараты этой группы эффективны при целом ряде инфекций, включая синегнойную палочку (Pseudomonas aeruginosa) и клебсиеллу (Klebsiella spp.)
В медицинской практике сегодня применяется только Азлоциллин.
Карбоксипенициллины и уреидопенициллины разрушаются ферментами стафилококков бета-лактамазами.
Преодолеть ферменты стафилококков могут соединения — ингибиторы бета-лактамаз (клавулановая кислота, сульбактам и тазобактам). Пенициллины, защищенные от разрушающего действия стафилококкового фермента, называются ингибиторозащищенными. Они представлены Амоксициллином/Клавуланатом, Ампициллином/Сульбактамом, Амоксициллином/Сульбактамом, Пиперациллином/Тазобактамом, Тикарциллином/Клавуланатом. Ингибиторозащищенные пенициллины широко применяются для лечения инфекций различной локализации, используются при предоперационной профилактики в абдоминальной хирургии.
Цефалоспорины
Самую большую группу антибиотиков представляют цефалоспорины. Они охватывают широкий антимикробный спектр, обладают высокой бактерицидной активностью и высокой устойчивостью к бета-лактамазам стафилококков. Цефалоспорины подразделяются на 4 поколения. Цефалоспорины 3 и 4 поколения обладают широким спектром антимикробного действия. В основе данного деления лежит спектр антимикробной активности и устойчивость к бета-лактамазам. Цефалоспорины убивают микробную клетку путем подавления синтеза пептидогликана (муреина) — основного компонента их клеточных мембран.
Цефалоспорины 3-го поколения представлены Цефиксимом, Цефотаксимом, Цефтриаксоном, Цефтазидимом, Цефоперазоном, Цефтибутеном и др. Цефалоспорины 4-го поколения — Цефепимом и Цефпиромом.
Высокая эффективность цефалоспоринов и низкий токсический эффект сделали эти антибиотики одними из самых популярных в клиническом использовании среди всех антимикробных препаратов.
Тетрациклины
Применение препаратов группы тетрациклина сегодня ограничено. Причиной этому являются побочные действия этих антибиотиков и появление большого количества случаев устойчивых к тетрациклинам микроорганизмов. Природный антибиотик Тетрациклин и полусинтетический антибиотик Доксициклин сегодня применяют при хламидиозах, риккетсиозах, некоторых заболеваниях, передающихся от животных человеку (зоонозах) и тяжелом течении угревой сыпи.
Аминогликозиды
Аминогликозиды приводят микробную клетку к гибели способом блокировки субъединицы 30S рибосомы и нарушением считывания генетического кодонов, в результате чего образуются ненужные микробу полипептиды. По мере введения аминогликозидов в медицинскую практику выделяются 4 поколения антибиотиков этой группы.
I поколение представлено Стрептомицином, Неомицином, Канамицином, Мономицином.
II поколение — Гентамицином.
III поколение — Тобрамицином, Амикацином, Нетилмицином, Сизомицином.
IV поколение — Изепамицином.
Аминогдикозиды применяются для лечения тяжелых заболеваний, таких как чума, туберкулез, туляремия и др. Они обладают опасными побочными действиями, в связи с чем, их применение в медицинской практике ограничено (поражение почек, слуховых и диафрагмальных нервов).
Макролиды
Макролиды- самые нетоксичные антибиотики. Они обладают высокой степенью безопасности и хорошо переносятся больными. Препараты этой группы представлены Эритромицином, Спирамицином, Джозамицином и Мидекамицином — природными антибиотиками и Кларитромицином, Азитромицином, Мидекамицином ацетатом и Рокситромицином — полусинтетического происхождения.
Назначаются макролиды в основном при инфекциях, вызванных грамположительными кокками и внутриклеточными паразитами — микоплазмами и хламидиями, а также легионеллами.
Рифампицины
Рифампицины являются полусинтетическими производными природного антибиотика Рифамицина, который продуцируется актиномицетами. Антибиотики широко применяются для лечения туберкулеза и лепры. Рифампицины подавляют активность ДНК-зависимой РНК-полимеразы, что приводит к блокировке синтеза белка при переносе информации из ДНК на РНК.
Рис. 15. На фото использование диско-диффузионного метода определения чувствительности микроорганизмов к антибиотикам.
Рис. 16. На схеме отображены зоны подавления роста микроорганизмов антибиотиками.
Рис. 17. На фото слева колонии бактерий проявляют устойчивость к таблеткам антибиотиков. Справа рост вокруг таблеток отсутствует, значит, бактерии чувствительны к антибиотикам.
Рис. 18. Более чем в два раза за последние пять лет в РФ вырос рынок антибиотиков. Как говорится, есть спрос — есть предложение. Домашние аптечки россиян переполнены антимикробными препаратами. Микроорганизмы с каждым годом проявляют все большую устойчивость, на преодоление которой требуются более продолжительные курсы лечения и новые антибиотики.
Антибиотики широкого спектра действия являются универсальными солдатами в борьбе с многочисленными болезнетворными микробами. Классификация антибиотиков претерпела множество изменений со времени их применения в клинической практике. Существует много групп антибиотиков. Однако их всех объединяет выраженное избирательное действие на микроорганизмы и незначительное токсическое действие на макроорганизм.